3,135 research outputs found

    State of Alaska Election Security Project Phase 2 Report

    Get PDF
    A laska’s election system is among the most secure in the country, and it has a number of safeguards other states are now adopting. But the technology Alaska uses to record and count votes could be improved— and the state’s huge size, limited road system, and scattered communities also create special challenges for insuring the integrity of the vote. In this second phase of an ongoing study of Alaska’s election security, we recommend ways of strengthening the system—not only the technology but also the election procedures. The lieutenant governor and the Division of Elections asked the University of Alaska Anchorage to do this evaluation, which began in September 2007.Lieutenant Governor Sean Parnell. State of Alaska Division of Elections.List of Appendices / Glossary / Study Team / Acknowledgments / Introduction / Summary of Recommendations / Part 1 Defense in Depth / Part 2 Fortification of Systems / Part 3 Confidence in Outcomes / Conclusions / Proposed Statement of Work for Phase 3: Implementation / Reference

    Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Get PDF
    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues

    West Nile Virus Viremia in Wild Rock Pigeons

    Get PDF
    Feral rock pigeons were screened for neutralizing antibodies to West Nile virus (WNV) during late winter/spring and summer of 2002 and 2003. Additionally, virus isolation from serum was attempted from 269 birds collected during peak transmission periods. The observed viremia levels and seroprevalence indicate that this species could be involved in amplifying WNV in urban settings

    Editorial: Macrocognition: The Science and Engineering of Sociotechnical Work Systems

    Get PDF
    The increasing complexity of work systems and changes in the nature of workplace technology over the past century have resulted in an exponential shift in the nature of work activities, from physical labor to cognitive work. Modern work systems have many characteristics that make them cognitively complex: They can be highly interactive; comprised of multiple agents and artifacts; information may be limited and distributed across space and time; task goals are frequently ill-defined, conflicting, dynamic and emergent; planning may only be possible at general levels of abstraction or require adaptive solutions; some degree of proficiency or expertise is required; the stakes are often high; and uncertainty, time-constraints and stress are seldom absent. To complicate matters further, cognition in complex work settings is typically constrained by broader professional, organizational, and institutional practice and policy. These features of cognitive work present significant challenges to scientific methodology and theory, and subsequent design of reliable interventions. Historically, philosophers and scientists have attempted to understand the mental activities experienced during cognitive work at multiple levels of analysis using divergent methods. Some have examined cognition at an associative, contextual, functional or holistic level, relying on naturalistic methods to understand the higher mental processes as they work in harmony during goal-directed behavior. Others have embraced experimental methods and favored internal over external validity, often reducing cognition to a psychology of fundamental acts, such as short-term memory access with millisecond shifts in attention. More recently, Macrocognition has evolved as a complementary paradigm. Macrocognitive researchers have studied the cognitive functions and processes associated with skilled, adaptive, collaborative, and resilient cognitive work in the context of the aforementioned complexities of psychotechnical and sociotechnical work systems. Typically, this research has been carried out using cognitive task analytic techniques that draw on both naturalistic and (quasi-)experimental methods. The primary goals of research in Macrocognition are to better understand cognitive adaptations to complexity, to increase our theoretical understanding of the organism-environment relations by studying the mapping between cognitive work and real-world demands, and to promote use-inspired research capable of improving system performance

    Spatial Awareness is Related to Moderate Intensity Running during a Collegiate Rugby Match

    Get PDF
    International Journal of Exercise Science 9(5): 599-606, 2016. The purpose of the present study was to evaluate the relationship between spatial awareness, agility, and distance covered in global positioning system (GPS) derived velocity zone classifications during a collegiate rugby match. Twelve American collegiate rugby union players (mean±SD; age: 21.2±1.4 y; weight: 85.0±16.0 kg; 7 forwards & 5 backs) on a single team volunteered to participate in this investigation. The distances travelled at low (walking/jogging; \u3c2.7m/s), moderate (cruising/striding; 2.7-5.0 m/s), and high intensities (running/sprinting; \u3e5.0 m/s) were measured for each player using GPS sensors and normalized according to playing time during an official USA Rugby match. Spatial awareness was measured as visual tracking speed from one core session of a 3-dimensional multiple-object-tracking speed (3DMOTS) test (1.35±0.59 cm·sec-1). Agility was assessed utilizing the pro agility (5.05±0.28 sec) and t drill (10.62±0.39 sec). Analysis of variance revealed that athletes travelled the greatest distance during walking/jogging (39.5±4.5 m·min-1) and least distance during running/sprinting (4.9±3.5 m·min-1). Pearson product moment correlations revealed that only distance covered while cruising/striding (20.9±6.5 m·min-1) was correlated to spatial awareness (r=0.798, p=0.002). Agility did not correlate to distance covered at any velocity zone or spatial awareness. Spatial awareness, as determined by 3DMOTS, appears to be related to the moderate intensity movement patterns of rugby union athletes

    O/IR Polarimetry for the 2010 Decade (GAN): Science at the Edge, Sharp Tools for All

    Full text link
    Science opportunities and recommendations concerning optical/infrared polarimetry for the upcoming decade in the field of Galactic science. Community-based White Paper to Astro2010 in response to the call for such papers.Comment: White Paper to the Galactic Neighborhood (GAN) Science Frontiers Panel of the Astro2010 Decadal Surve

    A refined, controlled 16S rRNA gene sequencing approach reveals limited detection of cerebrospinal fluid microbiota in children with bacterial meningitis

    Get PDF
    Advances in both laboratory and computational components of high-throughput 16S amplicon sequencing (16S HTS) have markedly increased its sensitivity and specificity. Additionally, these refinements have better delineated the limits of sensitivity, and contributions of contamination to these limits, for 16S HTS that are particularly relevant for samples with low bacterial loads, such as human cerebrospinal fluid (CSF). The objectives of this work were to (i) optimize the performance of 16S HTS in CSF samples with low bacterial loads by defining and addressing potential sources of error, and (ii) perform refined 16S HTS on CSF samples from children diagnosed with bacterial meningitis and compare results with those from microbiological cultures. Several bench and computational approaches were taken to address potential sources of error for low bacterial load samples. We compared DNA yields and sequencing results after applying three different DNA extraction approaches to an artificially constructed mock-bacterial community. We also compared two postsequencing computational contaminant removal strategies, decontam R and full contaminant sequence removal. All three extraction techniques followed by decontam R yielded similar results for the mock community. We then applied these methods to 22 CSF samples from children diagnosed with meningitis, which has low bacterial loads relative to other clinical infection samples. The refined 16S HTS pipelines identified the cultured bacterial genus as the dominant organism for only 3 of these samples. We found that all three DNA extraction techniques followed by decontam R generated similar DNA yields for mock communities at the low bacterial loads representative of CSF samples. However, the limits of detection imposed by reagent contaminants and methodologic bias precluded the accurate detection of bacteria in CSF from children with culture-confirmed meningitis using these approaches, despite rigorous controls and sophisticated computational approaches. Although we did not find current DNA-based diagnostics to be useful for pediatric meningitis samples, the utility of these methods for CSF shunt infection remains undefined. Future advances in sample processing methods to minimize or eliminate contamination will be required to improve the sensitivity and specificity of these methods for pediatric meningitis
    • …
    corecore